Cálculo de intensidade e ritmo do treino em Treinamento de Ritmo de Prova Ultracurto (USRPT) na natação

Mensagens e conselhos para treinadores

Cálculo de intensidade e ritmo do treino em Treinamento de Ritmo de Prova Ultracurto (USRPT) na natação: Mensagens e conselhos para treinadores

Downloads



Autores

  • Konstantinos Papadimitriou Faculty of Sport Sciences and Physical Education, Metropolitan College, University of East London, Thessaloniki Campus, Greece

Palavras-chave:

USRPT, Treinamento De Alta Intensidade, Sprint, Fisiologia, Natação

Resumo

Um método recentemente referenciado, conhecido como treinamento de ritmo de prova ultracurto (USRPT), projetado para familiarizar nadadores com o ritmo de um evento de natação usando altos volumes e intensidades submáximas, surgiu como uma abordagem eficiente, melhorando o desempenho e prevendo resultados na natação. Apesar de seus benefícios reconhecidos, particularmente sua menor carga fisiológica em comparação com outros métodos de treinamento, a pesquisa sobre USRPT ainda está em seus estágios iniciais. Há mal-entendidos relacionados à sua intensidade e ao cálculo do ritmo. Esta revisão sistemática visa fornecer declarações válidas identificando os prós e contras do USRPT como um estímulo de treinamento e fornecendo aos treinadores de natação mensagens-chave e conselhos sobre este método de treinamento. Para a análise, 90.612 estudos dos bancos de dados PubMed, EBSCO, Science Direct e Google Scholar foram selecionados para pesquisar o histórico, a intensidade e o cálculo do ritmo do método USRPT, embora apenas quatro atendessem aos critérios de inclusão. A triagem final dos estudos selecionados foi realizada utilizando um documento PRISMA-P. O USRPT tem o potencial de se tornar um estímulo de treinamento dominante, oferecendo uma alternativa precisa às séries de treinamento frequentemente vagas que muitos nadadores utilizam. No entanto, estudos adicionais com foco em aspectos específicos do cálculo de intensidade e ritmo dentro das séries do USRPT são necessários para uma compreensão abrangente. Em conclusão, o USRPT parece ser uma variação submáxima do treinamento intervalado de alta intensidade (HIIT) com baixa relevância para lactato sanguíneo em eventos de natação. Além disso, o cálculo do ritmo deve ser implementado considerando as diferentes demandas de cada ponto de um evento de natação.

Referências

(1) Gastin PB. Energy System Interaction and Relative Contribution during Maximal Exercise. Sports Medicine (Auckland, NZ) [Internet]. 2001;31(10):725–41. Available from: https://pubmed.ncbi.nlm.nih.gov/11547894/

(2) Duffield R, Dawson B, Goodman C. Energy system contribution to 100-m and 200-m track running events. Journal of Science and Medicine in Sport [Internet]. 2004 Sep;7(3):302–13. Available from: https://pubmed.ncbi.nlm.nih.gov/15518295/

(3) Papadimitriou K, Loupos D. The Effect of an Alternative Swimming Learning Program on Skills, Technique, Performance, and Salivary Cortisol Concentration at Primary School Ages Novice Swimmers. Healthcare. 2021 Sep 19;9(9):1234.

(4) Papadimitriou K, Papadimitriou N, Vassilios Gourgoulis, Vassilis Barkoukis, Dimitris Loupos. Assessment of Young Swimmers’ Technique with Tec Pa Tool. Central European Journal of Sport Sciences and Medicine. 2021 Jan 1;34:39–51.

(5) Achten J, Jeukendrup AE. Heart Rate Monitoring. Sports Medicine. 2003;33(7):517–38.

(6) Olstad BH, Bjørlykke V, Olstad DS. Maximal Heart Rate for Swimmers. Sports. 2019 Nov 12;7(11):235.

(7) Nagle EF, Nagai T, Beethe AZ, Lovalekar MT, Zera JN, Connaboy C, et al. Reliability and Validity of a Pool-Based Maximal Oxygen Uptake Test to Examine High-Intensity Short-Duration Freestyle Swimming Performance. Journal of Strength and Conditioning Research. 2019 May;33(5):1208–15.

(8) Maglischo EW. Swimming fastest. Champaign, Il: Human Kinetics; 2003.

(9) Kabasakalis A, Nikolaidis S, Tsalis G, Mougios V. Response of Blood Biomarkers to Sprint Interval Swimming. International Journal of Sports Physiology and Performance. 2020 Nov 1;15(10):1442–7.

(10) Papadimitriou K, Athanasios Kabasakalis, Papadopoulos A, Mavridis G, Georgios Tsalis. Comparison of Ultra-Short Race Pace and High-Intensity Interval Training in Age Group Competitive Swimmers. Sports [Internet]. 2023 Sep 18 [cited 2024 Feb 10];11(9):186–6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537129/

(11) Papadimitriou K, Savvoulidis S. The Effects of Two Different HIIT Resting Protocols on Children’s Swimming Efficiency and Performance. Central European Journal of Sport Sciences and Medicine. 2020;30:15–24.

(12) Norton K, Norton L, Sadgrove D. Position statement on physical activity and exercise intensity terminology. Journal of Science and Medicine in Sport. 2010 Sep;13(5):496–502.

(13) American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription. 9th ed. Liguori G, editor. Philadelphia: Wolters Kluwer; 2014.

(14) Kravitz L. HigH-intensity interval training [Internet]. 2014. Available from: https://www.acsm.org/docs/default-source/files-for-resource-library/high-intensity-interval-training.pdf

(15) Atakan MM, Li Y, Koşar ŞN, Turnagöl HH, Yan X. Evidence-Based Effects of High-Intensity Interval Training on Exercise Capacity and Health: A Review with Historical Perspective. International Journal of Environmental Research and Public Health [Internet]. 2021 Jul 5;18(13):7201. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8294064/

(16) Gibala MJ, Gillen JB, Percival ME. Physiological and Health-Related Adaptations to Low-Volume Interval Training: Influences of Nutrition and Sex. Sports Medicine. 2014 Oct 30;44(S2):127–37.

(17) Weston KS, Wisløff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. British Journal of Sports Medicine [Internet]. 2013 Oct 21;48(16):1227–34. Available from: https://bjsm.bmj.com/content/48/16/1227

(18) Papadimitriou K, Savvoulidis S. Does High Intensity Interval Training (HIIT) Have an Effect on Young Swimmer’s Performance? J. Sports Sci. Rec. 2017; 25, 20–29.

(19) Dalamitros AA, Semaltianou E, Toubekis AG, Kabasakalis A. Muscle Oxygenation, Heart Rate, and Blood Lactate Concentration During Submaximal and Maximal Interval Swimming. Frontiers in Sports and Active Living. 2021 Dec 13;3.

(20) Gillen JB, Gibala MJ. Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Applied Physiology, Nutrition, and Metabolism. 2014 Mar;39(3):409–12.

(21) Burgomaster KA, Hughes SC, Heigenhauser GJF, Bradwell SN, Gibala MJ. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. Journal of Applied Physiology. 2005 Jun;98(6):1985–90.

(22) Terzi E, Skari A, Nikolaidis S, Papadimitriou K, Kabasakalis A, Mougios V. Relevance of a Sprint Interval Swim Training Set to the 100‐Meter Freestyle Event Based on Blood Lactate and Kinematic Variables. Journal of Human Kinetics. 2021 Oct 31;80(1):153–61.

(23) Girard O, Mendez-Villanueva A, Bishop D. Repeated-Sprint Ability-Part I: Factors Contributing to Fatigue. Sports Med. 2011; 41, 673–694.

(24) Thurlow F, Weakley J, Townshend AD, Timmins RG, Morrison M, McLaren SJ. The Acute Demands of Repeated-Sprint Training on Physiological, Neuromuscular, Perceptual and Performance Outcomes in Team Sport Athletes: A Systematic Review and Meta-analysis. Sports Medicine [Internet]. 2023 May 24;53(8):1609–40. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC10356687/

(25) Camacho-Cardenosa M, Camacho-Cardenosa A, González-Custodio A, Zapata V, Olcina G. Effects of Swimming-Specific Repeated-Sprint Training in Hypoxia Training in Swimmers. Frontiers in Sports and Active Living. 2020 Aug 11;2.

(26) Heck H, Mader A, Hess G, Mücke S, Müller R, Hollmann W. Justification of the 4-mmol/l Lactate Threshold. International Journal of Sports Medicine. 1985 Jun;06(03):117–30.

(27) Rushall BS. Understanding a USRPT Set. Swim. Sci. Bull. 2013; 45e, 1–4.

(28) Williamson D, McCarthy E, Ditroilo M. Acute Physiological Responses to Ultra Short Race‐Pace Training in Competitive Swimmers. Journal of Human Kinetics. 2020 Oct 31;75(1):95–102.

(29) Cuenca-Fernández F, Boullosa D, Ruiz-Navarro JJ, Gay A, Morales-Ortíz E, López-Contreras G, et al. Lower fatigue and faster recovery of ultra-short race pace swimming training sessions. Research in Sports Medicine. 2021 May 25;1–14.

(30) Page M, Tetzlaff J, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Value in Health. 2021 May;23(10):S312–3.

(31) Åstrand I, Åstrand PO, Christensen EH, Hedman R. Intermittent Muscular Work. Acta Physiologica Scandinavica. 1960 Aug;48(3-4):448–53.

(32) Training for Swimming [Internet]. Sdsu.edu. 2025 [cited 2025 Sep 26]. Available from: https://coachsci.sdsu.edu/swim/training/beidaris.htm

(33) Nugent F, Comyns T, Kearney P, Warrington G. Ultra-Short Race-Pace Training (USRPT) In Swimming: Current Perspectives. Open Access Journal of Sports Medicine. 2019 Oct;Volume 10:133–44.

(34) Ekblom B. Factors Determining Maximal Aerobic Power. Acta Physiol. Scand. 1986; 556, 15–19.

(35) Sjodin B, Jacobs I, Svedenhag J. Changes in onset of blood lactate accumulation (OBLA) and muscle enzymes after training at OBLA. European Journal of Applied Physiology and Occupational Physiology [Internet]. 1982 Jun;49(1):45–57. Available from: https://link.springer.com/article/10.1007%2FBF00428962

(36) Jakobsson J, Malm C. Maximal Lactate Steady State and Lactate Thresholds in the Cross-Country Skiing Sub-Technique Double Poling. Int. J. Exerc. Sci. 2019; 12, 57–68.

(37) Płoszczyca K, Jazic D, Piotrowicz Z, Chalimoniuk M, Langfort J, Czuba M. Comparison of maximal lactate steady state with anaerobic threshold determined by various methods based on graded exercise test with 3-minute stages in elite cyclists. BMC Sports Science, Medicine and Rehabilitation. 2020 Nov 17;12(1).

(38) Avlonitou E. Maximal lactate values following competitive performance varying according to age, sex and swimming style. PubMed. 1996 Mar 1;36(1):24–30.

(39) Schnitzler C, Seifert L, Chollet D. Variability of coordination parameters at 400-m front crawl swimming pace. J. Sports Sci. Med. 2008; 8, 203–210.

(40) Vescovi JD, Falenchuk O, Wells GD. Blood Lactate Concentration and Clearance in Elite Swimmers During Competition. International Journal of Sports Physiology and Performance. 2011 Mar;6(1):106–17.

(41) Sousa AC, Figueiredo P, Oliveira NL, Oliveira J, Silva AJ, Keskinen KL, et al. V˙O2Kinetics in 200-m Race-Pace Front Crawl Swimming. International Journal of Sports Medicine. 2011 Sep 12;32(10):765–70.

(42) Zacca R, Lopes AL, Teixeira BC, da Silva LM, Cardoso C. Lactate Peak in Youth Swimmers: Quantity and Time Interval for Measurement after 50–1500 Maximal Efforts in Front Crawl. J. Physiol. 2014; 66, 90–95.

(43) Rushall BS. Step-by-Step USRPT Planning and Decision-Making Processes and Examples of USRPT Training Sessions, Microcycles, Macrocycles, and Technique Instruction. Swim. Sci. Bull [Internet]. 2016; 47, 1–4. Available from: https://coachsci.sdsu.edu/swim/bullets/47GUIDE.pdf

(44) Rushall BS. USRPT and Training Theory II: The Overload Principle. Swim. Sci. Bull. 2016; 60b, 1–20.

_______________________________________________

Artigo adaptado e traduzido para o português pelos editores de NADAR! SWIMMING MAGAZINE para republicação, conforme normas de submissão do periódico. Versão original em: https://www.mdpi.com/2075-4663/12/8/227 LICENÇA ORIGINAL E DA ADAPTAÇÃO: Attribution 4.0 International CC BY 4.0. https://creativecommons.org/licenses/by/4.0/.

Imagem meramenter ilustrativa. FONTE: Freepik AI

Publicado

2025-09-26

Como Citar

1.
Papadimitriou K. Cálculo de intensidade e ritmo do treino em Treinamento de Ritmo de Prova Ultracurto (USRPT) na natação: Mensagens e conselhos para treinadores. Nadar! Swim Mag [Internet]. 26º de setembro de 2025 [citado 27º de setembro de 2025];5(168):e168-111. Disponível em: https://www.revistanadar.com.br/index.php/Swimming-Magazine/article/view/111

ARK

NADAR! ADS